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Abstract  

This work presents comparative results of two 
alternative methods to the conventional finite 
difference which is widely used for seismic modeling 
in exploration geophysics. The objective is to 
minimize the numerical dispersion problem while 
keeping the goal of not significantly increasing the 
computational cost. 

The first method uses a nearly-analytic discrete 
operator to approximate the partial differential 
operators. The second one proposes to minimize the 
dispersion energy error in the wavenumber domain.  

Based on these schemes, many strategies have been 
developed, and shown their superiority in 
suppressing numerical dispersion over conventional 
algorithms according to their authors. 

 

Introduction 
 
Important and promising steps for seismic imaging such 
as optimizing acquisition parameters, migration and full 
waveform inversion require the ability to simulate the 
wave field and its effects in the most accurate and 
computationally efficient manner. Having become a very 
popular method in exploration geophysics to perform 
seismic modeling, the classical finite difference method 
has simple implementation, flexibility and efficiency. On 
the other hand, this method often suffers from problems 
such as computational cost and numerical dispersion 
caused by the discretization of the wave equations, 
especially when models have strong velocity contrasts 
between adjacent layers or too few samples per 
wavelength are used. Usually, there are two ways to 
suppress the numerical dispersions: use high-order 
schemes or finer spatial grids. Unfortunately, these 
solutions may not be satisfactory in many cases as both 
approaches increase the computation cost. 
 
This paper presents the results obtained with the 
reproduction of the methodology exposed in Li et al. 
(2011) - Optimal Nearly Analytic Discrete Method 
(ONADM), which describes an optimized method for the 

calculation of spatial derivatives present in the wave 
equation, with additional information from the field 
gradient. In addition the methodology seen in Bogey and 
Bailly (2004) was adapted to minimize the dispersion 
error energy in the wavenumber domain. The latter one 
showed the best results as can be seen in details as 
follows. 

 

Methods 

 
The following sets out the main ideas of the method 
ONADM for an acoustic 2D. Starting with the wave 
equation for the case cited: 
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Where u = u (x, z, t) represents the pressure field and c0 
(x, z) the medium velocity. We continue with the following 
notation which facilitates setting the gradient field and its 
representation with the discretization. 
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Where ∆t is the time increment. Expanding in Taylor 
series the vector U for time (n+1)∆t and (n-1)∆t and 
summing these equations leads to: 
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where terms of order ∆t6 were not considered. At this 
point it would be possible to calculate the time derivatives 
in the expression (3) by an approximation by central finite 
differences, for example. However, this would be rather 
inefficient in terms of computational cost, as it requires a 
large storage capacity memory raising the cost of the 
process and to request more information from initial 
conditions. To overcome this difficulty, the time 
derivatives appearing in equation (3) are replaced by 
spatial derivatives using equation (1). This leads to the 
following equation. 
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As it is not possible to use an infinite Taylor series 
expansion in search for computational precision, as an 
alternative to the truncation exposed in equation (3), 
Kondoh (1994) proposed the introduction of an 
interpolation function and the use of associative links 
between neighbors for each point in an attempt to recover 
some of the lost information on truncation. This 
interpolation function and its gradient, also allow obtaining 
expressions for the discretized high-order spatial 
derivatives present in equation (4). In this study we used 
the interpolation function,  
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in which the sum was calculated until r=5, as in equation 
(4) derivatives are present up to the fifth order. The 
connection relations are obtained for each grid point with 
each of its eight neighbors as shown in Figure 1. 

 

 
Figure 1: Neighbors of the point i, j used to generate the 
relations connecting 

The other method presented here was proposed by 
Bogey and Bailly. Originally it describes an approximation 
to first order derivatives. However, the same idea can be 
used for higher order derivatives. 

The spatial derivative can be approximated by a central, 
2N+1 point stencil, finite-difference scheme as  
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Where ∆x is the spacing of a uniform mesh, and the 
coefficients aj are such as aj=-a-j. 

Following Tam and Webb (1993), we apply spatial Fourier 
transform to equation 6 
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Where k* is label as the effective wavenumber. The 
dispersion error is the difference between the effective 
and the exact wavenumbers k* and k. Finite difference 
schemes using 9, 11, 13 and higher points can be 
developed so that the dispersion error is small for a large 
range of wavenumbers up to k∆x=π/2. The coefficients aj 
are defined to minimize the integral error 
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Results 

 

In order to demonstrate the numerical dispersion present 
in the two alternative methods previously described and 
the conventional finite differences algorithms, we simulate 
the seismic wave field in a 2D homogeneous medium. An 
explosive Ricker source is located at the center of the 
computational domain. The modeling parameters are 
given in Table 1. 

 

 

Velocity 1500 m/s 

Cutoff frequency 30 Hz 

Time step 0.001 ms 

Grid point interval 20 m 

Model dimensions X and 
Z 

1024 x 1024 grid points 

Table 1: Modeling parameters 
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Figure 2: Snapshots obtained with the traditional finite 
differences method (a), the method described in Yang 
(2011) (b) and the method based on Bogey and Bailly 
(2004) (c) at t = 6 s. 

 

Figure 2 (a), (b) and (c) show the wavefield snapshots at 
t=6 sec. For clarity, only one quarter of each snapshot is 
shown. 

With the purpose of facilitating the comparison between 
the three methods, figure 3 depicts a horizontal profile in 
the same constant depth for all the snapshots present in 
figure 2. Each of these profiles is superimposed to a 
profile acquired through the method based on Bogey and 
Bailly (2004) with a grid point interval four times smaller 
then the one displayed in Table 1. In other words, the 
reference solution uses h=5 m. 

 

Conclusions 
 

A comparison between the conventional finite differences 
operator, to approximate the spatial derivatives existing in 
the wave equation, and two alternative methods are 
performed. The first alternative method uses a nearly-
analytic discrete operator to approximate the partial 
differential operators and thus reduce the numerical 
dispersion issue. Although the results presented in the 
work of Yang (2011) show that this can be achieved to 
their conditions, when we use a model with lower velocity, 
which is more critical for the numerical dispersion, this 
method does not provide a good fit to the reference 
solution as it can be seen in figures 2 and 3. 

The second method, on the other hand, attempts to 
minimize the dispersion error in the wavenumber domain, 
finding the best coefficients that approximate a partial 
derivative by a minimization process (equations 6 to 8). 

 

 

 

Figure 3: Horizontal profile of the snapshots exposed in 
figure 2 with the reference solution. From top to bottom, 
the traditional FD method, the method proposed by Yang 
(2011) and the method based on Bogey and Bailly (2004). 

 

 

When compare to the reference solution, this approach 
shows the best fit as figures 2 and 3 demonstrate. 
Another advantage is the same computational cost as the 
traditional finite differences method because, in practice, 
their main difference lies in the optimized coefficients, 
obtained only once by the minimization described in 
equation 8.  
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